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Abstract
We consider the evaluation of D-dimensional conformal invariant integrals
which involve spin one-half and spin-one particles. The star–triangle relation
for the massless Yukawa theory is derived, and the longitudinal part of the
three-point Green function of massless QED is determined to the lowest order
in position space. The operator algebraic method of calculating massless
Feynman integrals is used for the evaluation.

PACS numbers: 11.10.−z, 11.15.−q

1. Introduction

This work is concerned with the evaluation of conformal invariant integrals in Euclidean
space with a general number of dimensions. A scale and Poincaré invariant field theory is
also generally conformal invariant. Now, any theory of massless particles with dimensionless
couplings is scale invariant at the tree level. Therefore, tree-level integrals in position space
in such a theory will exhibit a conformal invariant structure. The simplest example of this is
the star–triangle relation (also called the uniqueness relation) involving three massless scalar
fields. This relation, which evaluates the integral for the tree-level three-point function, not
only brings out the conformal structure, but also evaluates the coefficient exactly. The star–
triangle relation in three dimensions was given in [1], and was proved for a general number of
dimensions by Symanzik in [2].

Now the conformal invariance of the tree level can get broken due to diverging loop
contributions. Even then, such exact relations at the tree level are useful for carrying out the
integration over the internal vertices in position space diagrams. Of particular importance,
however, is the application of such relations to conformal field theories (CFTs). Various
aspects of CFTs in D dimensions have been reviewed in [3, 4]. The evaluation of the tree
level integrals is necessary for implementing the bootstrap program in a CFT [5, 6]. Using the
star–triangle relation to integrate over the internal vertices, the bootstrap program has been
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carried out to determine the anomalous dimensions in φ4 theory [7]. However, D-dimensional
CFTs generally involve particles with non-zero spin. A well-known example is the N = 4
supersymmetric Yang–Mills theory. Calculation of Feynman integrals in the position space in
this theory has been carried out in several recent works [8]. In the context of massless QED, a
formulation of conformal QED4 was suggested in [9, 10]. Also, the infrared limit of massless
QED3 is a CFT [11, 12]. Possible application in these theories is a motivation for studying
conformal invariant integrals with spinors and vector particles.

Other than this, analytical evaluation of massless Feynman integrals at multi-loop level
and the star–triangle relation are generally important for calculations in perturbative field
theory at high orders, and in mathematical physics: see [13] and references therein. Recently,
a simple method of doing these calculations has been developed by Isaev [13, 14] which
replaces the Feynman integrals by algebraic manipulation of operators. We use this method
extensively in this paper.

Three-point functions involving conserved vector operators in D-dimensional CFTs have
been discussed in [15]. We will, however, be concerned with the three-point function involving
the fermion and the gauge field in QED. This has been discussed in [9, 10], and we will compare
our result with that given in these two works.

This paper is organized as follows. In section 2, we discuss the usual star–triangle relation
using the operator approach. In section 3, we derive the star–triangle relation for the massless
Yukawa theory. In section 4, we perform an explicit calculation of the longitudinal part of
the three-point Green function of massless QED to the lowest order in position space. Our
conclusions are presented in section 5.

2. Star–triangle relation involving scalar fields

It will be helpful to first discuss, following [13], the usual star–triangle relation involving
scalar fields within the framework of the operator algebraic method. The relation evaluates
〈0|T (φ1(x1)φ2(x2)φ3(x3))|0〉 to the lowest order in position space with a φ1φ2φ3 interaction.
With xab ≡ xa − xb, the relation is given by [2]∫

dDx4
(
x2

14

)−δ1
(
x2

24

)−δ2
(
x2

34

)−δ3 = πD/2 �(D/2 − δ1)�(D/2 − δ2)�(D/2 − δ3)

�(δ1)�(δ2)�(δ3)

× (
x2

12

)−D/2+δ3
(
x2

13

)−D/2+δ2
(
x2

23

)−D/2+δ1
, (1)

where

δ1 + δ2 + δ3 = D. (2)

The left-hand side of equation (1) represents the propagation of a massless scalar particle
between the point xa and the internal vertex x4 with a scale dimension δa , for a = 1, 2, 3. It
is to be noted that equation (2) ensures that the coupling constant of the φ1φ2φ3 interaction is
dimensionless, and that the right-hand side of equation (1) has the conformal structure of the
three-point function involving three scalar fields also because of equation (2).

In the operator approach, one reduces Feynman integrals to products of position and
momentum operators q̂ i and p̂i (i = 1, . . . , D) taken between position eigenstates. A
collection of useful formulae is given in the appendix of our paper. The key relation
(equation (9) of [13]) is

p̂−2αq̂−2(α+β)p̂−2β = q̂−2βp̂−2(α+β)q̂−2α. (3)

This is the star–triangle relation in the operator form. To see this, one has to take equation (3)
between the states 〈x| and |y〉. This gives, on inserting the completeness relation and using
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equations (A.4), (A.5) and (A.6),∫
dDz

1

|x − z|D−2α

1

|z|2(α+β)

1

|y − z|D−2β
= πD/2 �(α)�(β)�(D/2 − α − β)

�(α + β)�(D/2 − α)�(D/2 − β)

× 1

|x|2β

1

|x − y|D−2α−2β

1

|y|2α
. (4)

It is important to note from equations (3) and (4) that the ‘p̂q̂p̂’ form represents the integral,
while the ‘q̂p̂q̂’ form gives the result of integration. Now let x = x1 − x2 and y = x3 − x2,
and let us also change to a new integration variable x4 defined by z = x4 − x2. Also, define
δ1, δ2 and δ3 by D/2 − α = δ1, α + β = δ2 and D/2 − β = δ3. This leads us to the relation
stated in the form of equation (1).

3. Star–triangle relation for massless Yukawa theory

We now turn to the massless Yukawa theory with a ψ̄ψφ interaction and a dimensionless
coupling. Symanzik [2] gives the method of deriving the star–triangle relation for this theory
using Schwinger parameters. We show how the operator approach provides us with an
alternative method, and derive the relation. The manipulations which we perform also set the
stage for the calculation of section 4.

The suitable starting ‘p̂q̂p̂’ form is now

� ≡ γiγj p̂i p̂
−2α−1q̂j q̂

−2(α+β)−1p̂−2β, (5)

so that

〈x|�|y〉 = i(D − 2α − 1)a(α + 1/2)a(β)

∫
dDz

�x− �z
|x − z|D−2α+1

�z
|z|2(α+β)+1

1

|y − z|D−2β
. (6)

To convert � to ‘q̂p̂q̂’ form, we first put q̂j next to p̂i in equation (5) by using equation (A.2).
(We extend the validity of equation (A.2) to all real α, and use it with −2α − 1 in the place of
2α.) We thus obtain

� = γiγj p̂i(q̂j p̂
−2α−1 + i(2α + 1)p̂−2α−3p̂j )q̂

−2(α+β)−1p̂−2β. (7)

Since γiγj p̂i p̂j = p̂2, we can use the key relation of equation (3) (with 2α + 1 in the place of
2α) in both the terms and obtain

� = γiγj p̂i q̂j q̂
−2βp̂−2(α+β)−1q̂−2α−1 + i(2α + 1)q̂−2βp̂−2(α+β)−1q̂−2α−1. (8)

The second term is already of ‘q̂p̂q̂’ form. To put the first term also into that form, p̂i has to
be brought next to p̂−2(α+β)−1. For this, we take p̂i first through q̂j using equation (A.1) and
then through q̂−2β using equation (A.3). This generates a couple of additional terms, and on
simplification equation (8) reduces to

� = γiγj q̂j q̂
−2βp̂i p̂

−2(α+β)−1q̂−2α−1 − i(D − 2α − 2β − 1)q̂−2βp̂−2(α+β)−1q̂−2α−1. (9)

To obtain 〈x|�|y〉, we use equations (A.4), (A.5) and (A.7). This gives

〈x|�|y〉 = i(D − 2α − 2β − 1)a(α + β + 1/2)
( �x− �y) �y

|x|2β |x − y|D−2α−2β+1|y|2α+1
. (10)

Equating the right-hand sides of equations (6) and (10), we arrive at the desired relation.
The coefficients can be determined from equation (A.6) and simplified using the relation
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n�(n) = �(n + 1). Finally, using the new variables xa and δa as below equation (4), we arrive
at the form∫

dDx4
�x14(

x2
14

)δ1+1/2

�x42(
x2

24

)δ2+1/2

1(
x2

34

)δ3

= πD/2 �(D/2 − δ1 + 1/2)�(D/2 − δ2 + 1/2)�(D/2 − δ3)

�(δ1 + 1/2)�(δ2 + 1/2)�(δ3)

× �x13(
x2

13

)D/2−δ2+1/2

�x32(
x2

23

)D/2−δ1+1/2

1(
x2

12

)D/2−δ3
. (11)

As before, equation (2) ensures scale invariance at the tree level. For the special case of
D = 4, equation (11) is in agreement with equation (A6.12a) of [3].

4. Three-point Green function for massless QED

In order to evaluate 〈0|T (ψ(x1)ψ̄(x2)Ak(x3)|0〉 at the lowest order, we first need to specify
the tree-level propagators in the position space. We follow the convention [3, 4] of writing the
behavior of the fermion propagator and the photon propagator as

S(x) ∼ �x
(x2)dψ +1/2 , Dkl(x) ∼

(
δkl − (1 − η)

∂k∂l

∂2

)
1

(x2)dA
. (12)

Here dψ and dA are the scale dimensions, and η is the gauge-fixing parameter. The fermion
propagator /p/p2 in momentum space implies dψ = (D − 1)/2. For the photon, we will
consider dA = 1 [9, 10]. A photon propagator thus behaving as 1/pD−2 in momentum space
ensures that the QED coupling constant is dimensionless. This behavior, present in QED4,
also occurs in massless QED3 in the infrared: in the latter theory, the photon propagator goes
as 1/p in the infrared in the 1/N expansion (N being the number of fermion flavors) [11, 16].

The starting ‘p̂q̂p̂’ form for the lowest-order three-point function is therefore

p̂iγi p̂
−2γlq̂j γj q̂

−Dp̂−D+2(δkl − (1 − η)p̂kp̂lp̂
−2). (13)

(It may be helpful to compare equation (13) with equation (5). In equation (13), we have
α = 1/2 and β = (D − 2)/2. There is also a γl vertex factor and the tensor part of the photon
propagator.) In the present work, we will consider only the longitudinal part:

�k ≡ ηγiγlγj p̂i p̂
−2q̂j q̂

−Dp̂−D+2p̂kp̂l p̂
−2. (14)

On using the position space ‘matrix elements’ of p̂i p̂
−2, p̂−D+2 and p̂kp̂l p̂

−2 from equations
(A.7), (A.5) and (A.8) respectively, we find that

〈x|�k|y〉 = iη
(D − 2)

(2π)D

∫
dDz

�x− �z
|x − z|D γl

�z
|z|D

∂
y

k∂
y

l

(∂2)y

1

|y − z|2 . (15)

Our aim is to simplify equation (14) using the basic identity given in equation (3). The
problem in doing this is that it would lead us to (as the calculation given later shows) applying
equation (3) on p̂−2q̂−Dp̂−D+2. This (naively) results in q̂−D+2p̂−Dq̂−2. But using equations
(A.5) and (A.6) for 〈x|p̂−D|y〉 is not possible because �(D/2 − α) blows up for α = D/2.

This problem can be solved by the following regularization of the scale dimensions:

dψ = D − 1 − ε

2
, dA = 1 + ε. (16)

This corresponds to the propagators � x/xD−ε ∼ /p/p2+ε and 1/x2+2ε ∼ 1/pD−2−2ε for
the fermion and the photon respectively. The regularization of the two scale dimensions
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goes together, since the interaction ψ̄γiψAi must continue to have the dimension D. Our
regularization is similar to that given in equation (2.30) of [4], except that we have changed
the sign in front of ε in both dψ and dA. This has been done to ensure that we are led
to 〈x|p̂−D+ε |y〉 in the course of our calculation (see below), which is convergent (whereas
〈x|p̂−D−ε |y〉 would diverge in the infrared).

We therefore have to simplify the regularized form of equation (14):

�k = ηγiγlγj p̂i p̂
−2−ε q̂j q̂

−D+εp̂−D+2+2εp̂l p̂kp̂
−2. (17)

Using equation (A.8) for the ‘matrix element’ of p̂kp̂
−2, we can write

〈x|�k|y〉 = −iη
∂

y

k

(∂2)y
〈x|�′|y〉, (18)

�′ = γiγlγj p̂i p̂
−2−ε q̂j q̂

−D+εp̂−D+2+2εp̂l . (19)

It is easier to put �′ in ‘q̂p̂q̂’ form than �k . First use equation (A.2) to obtain

�′ = γiγlγj p̂i p̂
−2−ε q̂−D+ε(p̂−D+2+2ε q̂j − i(D − 2 − 2ε)p̂−D+2εp̂j )p̂l . (20)

The identity of equation (3) can now be used in both the terms, giving

�′ = γiγlγj p̂i q̂
−D+2+2εp̂−D+ε q̂−2−ε q̂j p̂l − i(D − 2 − 2ε)γip̂i q̂

−D+2+2εp̂−D+ε q̂−2−ε . (21)

We now bring p̂l next to p̂−D+ε in the first term by moving it through q̂j and then q̂−2−ε by
using equations (A.1) and (A.3) respectively. This leads to

�′ = γiγlγj p̂i q̂
−D+2+2εp̂−D+εp̂l q̂

−2−ε q̂j + iεγip̂i q̂
−D+2+2εp̂−D+ε q̂−2−ε . (22)

Finally p̂i is brought next to p̂−D+ε in both the terms to arrive at the ‘q̂p̂q̂’ form:

�′ = γi q̂
−D+2+2εp̂−D+2+ε q̂−2−ε q̂i + i(D − 2 − 2ε)γiγlγj q̂

−D+2ε q̂i p̂
−D+εp̂l q̂

−2−ε q̂j

+ iεγi q̂
−D+2+2εp̂−D+εp̂i q̂

−2−ε − ε(D − 2 − 2ε)γi q̂
−D+2ε q̂i p̂

−D+ε q̂−2−ε .

(23)

The evaluation of 〈x|�′|y〉 can now be completed by using equations (A.4)–(A.7). It is
found that in the resulting terms, the diverging �(ε/2) always comes multiplied by ε.
Since ε�(ε/2) = 2�(1 + ε/2), taking ε → 0 gives finite results for all the four terms of
equation (23) (with the third term giving zero). We then obtain

〈x|�′|y〉 = 1

πD/22D−2�(D/2 − 1)

x2 �y− �x( �x− �y) �y− �x|x − y|2
xD|x − y|2|y|2 (24)

= 1

πD/22D−2�(D/2 − 1)

�x
xD

(
1

|x − y|2 − 1

|y|2
)

. (25)

Since (∂2)y ln(|x − y|/|y|) = (D − 2)(1/|x − y|2 − 1/|y|2), equations (18) and (25) lead to

〈x|�k|y〉 = −iη
1

(4π)D/2�(D/2)

�x
xD

∂
y

k ln
|x − y|2

|y|2 . (26)

The right-hand sides of equations (15) and (26) are now to be equated. In terms of the variables
x1, x2, x3 and x4 defined below equation (4), the resulting relation reads
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dDx4

�x14

xD
14

γl

�x42

xD
24

∂
x3
k ∂

x3
l

(∂2)x3

1

x2
34

= πD/2

(D − 2)�(D/2)

�x12

xD
12

∂
x3
k ln

x2
23

x2
13

(27)

= 2πD/2

(D − 2)�(D/2)

�x12

xD
12

(
(x13)k

x2
13

− (x23)k

x2
23

)
. (28)

Equations (27) and (28) agree with the longitudinal structure function given from general
considerations of conformal invariance in [9, 10] respectively (the fermion scale dimension
being dψ = (D−1)/2 in our case). From equation (28), we note the value of the coefficient for
the physically interesting cases: π2 for D = 4 (massless QED4) and 4π for D = 3 (massless
QED3 in the infrared).

5. Conclusion

In this work, we evaluated conformal invariant integrals involving spin one-half and spin-one
particles in the context of two D-dimensional field theories with tree-level scale invariance:
the massless Yukawa theory and massless QED, both with dimensionless coupling constants.
The three-point function of the Yukawa theory and the longitudinal part of the three-point
function of QED were explicitly evaluated to the lowest order, and the results were expressed
in conformal invariant forms. We made use of the operator algebraic method of calculating
massless Feynman integrals. For the QED calculation, regularization of the scale dimensions
of the particles was used. While the present work focused on the longitudinal part only, our
plan is to evaluate the entire QED three-point function to the lowest order. The result can then
be used in higher order studies of massless QED3 in the infrared and also for implementing
the bootstrap program in that theory. More generally, the techniques developed in the present
work should be useful for calculations in other massless field theories and D-dimensional
CFTs.
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Appendix

In this appendix, we list and develop some important formulae of the operator approach
to the evaluation of massless Feynman integrals. We use i, j, k, . . . for spacetime indices,
and α, β, . . . for exponents of q̂2 and p̂2. Thus, q̂2α = (∑

i q̂ i q̂ i

)α
(and likewise p̂2α), the

parameter α being in general a complex number [13]. The fundamental commutation relation

[q̂i , p̂j ] = iδij (A.1)

leads to the following two useful relations:

[q̂ i , p̂
2α] = i2αp̂2α−2p̂i , (A.2)

[p̂i , q̂
2α] = −i2αq̂2α−2q̂ i . (A.3)

(A check on equations (A.2) and (A.3) is that they immediately give us equations (13) and
(14) of [13].)
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We use the normalization of position and momentum eigenstates followed in [13]. This
results in the following two ‘matrix elements’ [13],

〈x|q̂2α|y〉 = |x|2αδ(D)(x − y), (A.4)

〈x|p̂−2α|y〉 = a(α)
1

|x − y|D−2α
, (A.5)

where

a(α) = �(D/2 − α)

πD/222α�(α)
. (A.6)

In equation (A.5), D/2 − α �= 0,−1,−2, . . .. Now, 〈x|p̂i p̂
−2α|y〉 = −i∂x

i 〈x|p̂−2α|y〉 (this
being obtained by inserting the completeness relation in momentum space on the left-hand
side). Equation (A.5) then gives us

〈x|p̂i p̂
−2α|y〉 = i(D − 2α)a(α)

(x − y)i

|x − y|D−2α+2
. (A.7)

Another useful ‘matrix element’ which can be similarly obtained is 〈x|p̂i |y〉 = i∂y

i δ
(D)(x−y).

This relation can be generalized to

〈x|f (p̂i)|y〉 = f
(
i∂y

i

)
δ(D)(x − y), (A.8)

where f denotes an arbitrary function. As a check, it may be noted that consistency of
equation (A.8) with equations (A.5) and (A.6) leads to the expression for the Green function
for the operator ((−∂2)y)α .
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